NF-protocadherin, a novel member of the cadherin superfamily, is required for Xenopus ectodermal differentiation

نویسندگان

  • Roger S. Bradley
  • Amy Espeseth
  • Chris Kintner
چکیده

BACKGROUND The assembly of complex tissues during embryonic development is thought to depend on differential cell adhesion, mediated in part by the cadherin family of cell-adhesion molecules. The protocadherins are a new subfamily of cadherins; their extracellular domains comprise cadherin-like repeats but their intracellular domains differ significantly from those of classical cadherins. Little is known about the ability of protocadherins to mediate the adhesion of embryonic cells, or whether they play a role in the formation of embryonic tissues. RESULTS We report the isolation and characterization of a novel protocadherin, termed NF-protocadherin (NFPC), that is expressed in Xenopus embryos. NFPC showed a striking pattern of expression in early embryos, displaying predominant expression within the deep, sensorial layer of the embryonic ectoderm and in a restricted group of cells in the neural folds, but was largely absent from the neural plate and surrounding placodal regions. Ectopic expression in embryos demonstrated that NFPC could mediate cell adhesion within the embryonic ectoderm. In addition, expression of a dominant-negative form of NFPC disrupted the integrity of embryonic ectoderm, causing cells in the deep layer to dissociate, though leaving the outer layer relatively intact. CONCLUSIONS Our results indicate that NFPC is required as a cell-adhesion molecule during embryonic development, and its function is distinct from that of classical cadherins in governing the formation of a two-layer ectoderm. These results suggest that NFPC, and protocadherins in general, are involved in novel cell-cell adhesion mechanisms that play important roles in tissue histogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity

Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. M...

متن کامل

A complex of Protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion

During embryonic morphogenesis, adhesion molecules are required for selective cell-cell interactions. The classical cadherins mediate homophilic calcium-dependent cell adhesion and are founding members of the large and diverse cadherin superfamily. The protocadherins are the largest subgroup within this superfamily, yet their participation in calcium-dependent cell adhesion is uncertain. In thi...

متن کامل

Protocadherins and diversity of the cadherin superfamily.

Recent cadherin studies have revealed that many cadherins and cadherin-related proteins are expressed in various tissues of different multicellular organisms. These proteins are characterized by the multiple repeats of the cadherin motif in their extracellular domains. The members of the cadherin superfamily are divided into two groups: classical cadherin type and protocadherin type. The curren...

متن کامل

Nuclear factor-κB is involved in the protocadherin-10-mediated pro-apoptotic effect in multiple myeloma.

The gene encoding protocadherin-10 (PCDH10), a member of the cadherin superfamily, has been recently identified as a tumor suppressor gene (TSG). PCDH10 plays important roles in the apoptosis of tumor cells in some cancer types. However, the exact role of PCDH10 in multiple myeloma (MM) is largely unknown. Increasing evidence has suggested that the activation of nuclear factor-κB (NF-κB) is cru...

متن کامل

A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

BACKGROUND Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998